610. Quinoxaline Analogues. Part VII. ${ }^{1}$ Derivatives of 1,4,6-Triazanaphthalene.

By J. W. Clark-Lewis and R. P. Singh.

1,4,6-Triazanaphthalene analogues of previously described quinoxaline- ${ }^{2}$ and 1,4,5-triazanaphthalene-carboxyureides ${ }^{3}$ and -spirohydantoins, and other derivatives, have been prepared by condensing 3,4-diaminopyridines with 1,2-dicarbonyl compounds.
Among the triazanaphthalenes the $1,4,5$ - and the $1,4,6$-triaza-compound are especially interesting because they are isosteric with pteridine and can be regarded as 3 -deazapteridine and 1-deazapteridine ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$), respectively. Derivatives of $1,4,5$-triazanaphthalene were described earlier ${ }^{3}$ and corresponding 1,4,6-triazanaphthalene derivatives are now reported. The parent $1,4,6$-triazanaphthalene ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) was prepared by Koenigs et al. ${ }^{4}$ who also obtained 5 -chloro-1,4,6-triazanaphthalene but described it as 7 -chloro-1,4,6-triazanaphthalene because they regarded 3,4-diamino-2-chloropyridine ${ }^{5}$ as the

(III)

(IV)

6-chloro-compound. 5-Amino- and 5-hydroxy-1,4,6-triazanaphthalene (I; $\mathrm{R}=\mathrm{NH}_{2}, \mathrm{OH}$) were prepared ${ }^{6}$ much later and the only other derivatives of the ring system known at the beginning of the present investigation in 1959 were a phenanthro-fused system ${ }^{4}$ and two compounds ($\mathrm{II} ; \mathrm{R}=\mathrm{Ph}$ and Bu^{n}) prepared ${ }^{7}$ from ethyl oxalate and the appropriate diaminopyridines. The lability ${ }^{8}$ of $1,4,6$-triazanaphthalene is now known to be due to reversible covalent hydration of the 1,2 -bond rather than ring fission. ${ }^{9}$ 8-Nitroand 8 -amino-2,3-dimethyl-1,4,6-triazanaphthalene, 8 -amino-1,4,6-triazanaphthalene, and 8 -amino-2 (and 3)-methyl-1,4,6-triazanaphthalene were described ${ }^{10}$ while our work was in progress, and also 2,3-dimethyl-1,4,6-triazanaphthalene and its 1,2,3,4-tetrahydroderivative. ${ }^{11}$

The most obvious route to $1,4,6$-triazanaphthalenes is by condensation of 3,4-diaminopyridines with 1,2 -dicarbonyl compounds, and all thirteen known derivatives have been prepared by this method, sometimes with subsequent modification of a substituent. 3,4-Diamino- and 4 -alkylamino-3-amino-pyridines are easily prepared, and 3 -alkylamino4 -aminopyridines are available in a four-stage synthesis from 3 -bromopyridine. ${ }^{12}$ 3,4-Di-amino- and 2 -chloro-3,4-diamino-pyridine were converted into $1,4,6$-triazanaphthalene

[^0]($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and its 5-chloro-derivative ($\mathrm{I} ; \mathrm{R}=\mathrm{Cl}$) with glyoxal sodium bisulphite compound, and hydrogenolysis of the chloro-compound over palladium also gave 1,4,6-triazanaphthalene. Condensation of 3,4 -diaminopyridine with biacetyl and with benzil gave 2,3-dimethyl- ${ }^{11}$ and 2,3-diphenyl-1,4,6-triazanaphthalene; the former is remarkable for the deep blue colour it gives immediately on the addition of concentrated hydrochloric acid.

When 3,4-diaminopyridine was condensed with unsymmetrical dicarbonyl compounds (ethyl pyruvate, ethyl mesoxalate, alloxan) the products contained a 2 - or a 3 -carbonyl group, and the orientation was confirmed by conversion into the N-methyl derivatives. Ethyl pyruvate and 3,4-diaminopyridine gave a mixture from which 2 -hydroxy-3-methyl-1,4,6-triazanaphthalene (III; $\mathrm{R}=\mathrm{Me}$) was obtained, and this was converted by diazomethane into 1,2 -dihydro-1,3-dimethyl-2-oxo-1,4,6-triazanaphthalene (IV; $R=M e$), identical with that prepared from 3 -amino-4-methylaminopyridine.

Alloxan and 3,4-diaminopyridine gave 2 -hydroxy-1,4,6-triazanaphthalene-3-carboxyureide (III; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$), which readily cyclised in hot acetic acid to the spiran ($\mathrm{V} ; \mathrm{R}=\mathrm{H}$), this reaction being analogous to the cyclisation of the 1,4,5-triazanaphthalenecarboxyureides. ${ }^{3}$ 3-Amino-4-methylaminopyridine and alloxan gave a spiran (V; $\mathrm{R}=$ Me) directly owing to ready cyclisation of the intermediate ureide. Ethereal diazomethane converted the spiran ($\mathrm{V} ; \mathrm{R}=\mathrm{Me}$) into the trimethyl-spiran (VI), and the orientation of compound ($\mathrm{V} ; \mathrm{R}=\mathrm{H}$) was confirmed by its conversion with ethereal diazomethane into the same product (VI). 1,2,3,4-Tetrahydro-4-methyl-3-oxo-1,4,6-triazanaphthalene2 -spiro- 5 '-hydantoin was prepared from 4 -amino-3-methylaminopyridine for comparison with the isomer ($\mathrm{V} ; \mathrm{R}=\mathrm{Me}$).
(VII)

(IX)

Hydrolysis of the ureides or the spirohydantoins gave the corresponding triazanaphthalenecarboxylic acids, and specimens of these acids were therefore required for comparison. Condensing 3,4-diaminopyridine with ethyl mesoxalate gave a mixture of esters (III and

Light absorption of $1,4,6$-triazanaphthalenes in 95% ethanol. Wavelength ($\mathrm{m} \mu$) of maximum absorption (ε in parentheses).

Dihydro-oxo-1,4,6-triazanaphthalenes.

Tetrahydro-oxo-1,4,6-triazanaphthalenes.

IX	222 (20,900)		306 (4200)
$\mathrm{V} ; \mathrm{R}=\mathrm{H}$	225 (21,700)	-	308 (4200)
$\mathrm{V} ; \mathrm{R}=\mathrm{Me}$	220 (21,600)	-	309 (3800)
VI	225 (25,400)	-	310 (4000)

* Inflexion.

VII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$) which were separated by fractional crystallisation. With diazomethane these gave the methylated esters (IV and VIII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$) identical with specimens prepared by reaction of ethyl mesoxalate with 3 -amino-4- and 4 -amino-3methylaminopyridine. Ammonolysis of the corresponding esters gave the amides (III, IV, VII, and VIII; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH}_{2}$). Hydrolysis of the esters gave the acids (IV and VIII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$), which on decarboxylation gave 1,2-dihydro-1-methyl-2-oxo- (IV; $\mathrm{R}=\mathrm{H}$) and 3,4-dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene (VIII; $\mathrm{R}=\mathrm{H}$).

The light absorption of $1,4,6$-triazanaphthalene was similar to that of quinoxaline, ${ }^{13}$ and the light absorption characteristics of analogous quinoxaline and 1,4,6-triazanaphthalene derivatives were also very similar. Ultraviolet light absorption measurements provided the most convenient distinction between the dihydro- and tetrahydro-1,4,6-triazanaphthalene derivatives (see Table) as noted with the quinoxaline ${ }^{2}$ and $1,4,5$-triazanaphthalene analogues. ${ }^{3} \quad \mathbf{1 , 4 , 6}$-Triazanaphthalene derivatives were generally similar to their $1,4,5$-triazanaphthalene analogues in chemical properties.

Experimental

Unless otherwise stated, compounds were dissolved in 95% ethanol for measurement of light absorption.

1,4,6-Triazanaphthalene, m. p. 98° (lit., ${ }^{8}$ m. p. 97°) was prepared from 3,4 -diaminopyridine ${ }^{12}$ and glyoxal monohydrate, and purified by elution from alumina with light petroleum (b. p. $60-80^{\circ}$). It had $\lambda_{\text {max. }} 232(\varepsilon 25,400)$ and $309(\varepsilon 4500)$, $\lambda_{\text {min. }} 212(\varepsilon 5450)$; $\lambda_{\text {infl }} 252-282 \mathrm{~m} \mu$ ($\varepsilon \mathbf{2 3 0 0}$). It had a characteristic mouse-like odour and became brown on exposure to air.

5 -Chloro-1,4,6-triazanaphthalene was obtained (66%) from 2 -chloro- 3,4 -diaminopyridine ${ }^{5,14}$ and glyoxal sodium bisulphite compound; it crystallised from light petroleum (b. p. 80$100^{\circ}$) in needles, m. p. $139-140^{\circ}$. The compound has been described as 7 -chloro-1,4,6-triazanaphthalene. ${ }^{4}$ Hydrogenation in 0.5 N -sodium hydroxide over 5% palladised calcium carbonate converted the chloro-compound into $1,4,6$-triazanaphthalene (50%), m. p. and mixed m. p. 98°.

2,3-Dimethyl-1,4,6-triazanaphthalene.-3,4-Diaminopyridine (3 g .) and butane-2,3-dione (2.5 g.) were boiled with ethanol ($130 \mathrm{c.c}$.) under reflux for 2 hr . The solution was evaporated and the residue was purified by dissolution in light petroleum (b. p. $60-80^{\circ}$) and chromatography on alumina. Elution with benzene-light petroleum ($1: 1$) gave 2,3-dimethyl-1,4,6-triazanaphthalene ($3.47 \mathrm{~g} ., 79 \%$), which crystallised from light petroleum (b. p. $100-120^{\circ}$) in plates, m. p. 126° (Found: C, $67 \cdot 9 ;$ H, $5 \cdot 7$; N, 26.1. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3}$: C, $67.9 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 26.4 \%$). The compound had a characteristic mouse-like odour and became brown on exposure to air and light, gave a deep blue solution in concentrated hydrochloric acid, and had $\lambda_{\text {max. }}$ (in water) 232$234(\varepsilon 27,400)$ and $312(\varepsilon 5100), \lambda_{\text {min. }} 219(\varepsilon 9700)$ and $270-274 \mathrm{~m} \mu(\varepsilon 2700)$.

2,3-Diphenyl-1,4,6-triazanaphthalene.-3,4-Diaminopyridine (4 g .), benzil (8 g .), and ethanol (250 c.c.) were boiled for 1 hr . under reflux and the solution was kept at 0° for 24 hr . Filtration gave 2,3-diphenyl-1,4,6-triazanaphthalene which crystallised from aqueous ethanol (charcoal) in needles (6.25 g., 60%), m. p. 177° (Found: C, $80 \cdot 5 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 14 \cdot 7 . \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3}$ requires C, $80.5 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 14 \cdot 8 \%$), $\lambda_{\text {max. }} 234$ ($\varepsilon 33,400$), $264-266$ ($\varepsilon 19,400$), and $345-346(\varepsilon 10,600)$, $\lambda_{\text {min. }} 254(\varepsilon 18,500)$ and $314 \mathrm{~m} \mu(\varepsilon 6200)$. The compound gave a yellow solution in concentrated hydrochloric acid.

2-Hydroxy-3-methyl-1,4,6-triazanaphthalene (III; $\mathrm{R}=\mathrm{Me}$).-3,4-Diaminopyridine ($1 \cdot 4 \mathrm{~g}$.) in ethanol (50 c.c.) was heated under reflux for 1 hr . with ethyl pyruvate (1.6 g .), and the solution was then kept at 0° for 4 hr . Filtration gave a crystalline mixture from which 2-hydroxy-3-methyl-1,4,6-triazanaphthalene (1.03 g ., 50%) was extracted with benzene (Soxhlet); this crystallised from ethanol-benzene (charcoal) in yellow needles, m. p. 276-278 (decomp.) (Found: C, 59.7 ; H, 4.5; N, 26.2. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 59 \cdot 6 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 26 \cdot 1 \%$). The solid which remained undissolved in the benzene (Soxhlet) crystallised from aqueous ethanol (charcoal) in colourless needles ($0.45 \mathrm{~g} ., 22 \%$), m. p. $262-263^{\circ}$ (decomp.) (Found: C, $58 \cdot 8 ; \mathrm{H}, \mathbf{4} \cdot 6 ; \mathrm{N}, 25 \cdot 0 \%$), apparently consisting of impure 3-hydroxy-2-methyl-1,4,6-triazanaphthalene.

[^1]${ }^{14}$ Bremer, Annalen, 1935, 518, 274.

1,2-Dihydro-1,3-dimethyl-2-oxo-1,4,6-triazanaphthalene (IV; $\mathrm{R}=\mathrm{Me}$).-3-Amino-4-methylaminopyridine ${ }^{12}$ (2 g .), ethyl pyruvate (2.5 g .), and ethanol ($100 \mathrm{c} . \mathrm{c}$.) were heated under reflux for $1 \frac{1}{2} \mathrm{hr}$. and the solvent was evaporated under reduced pressure. Crystallisation of the residue from aqueous ethanol (charcoal) gave 1,2-dihydro-1,3-dimethyl-2-oxo-1,4,6-triazanaphthalene ($2 \cdot 6 \mathrm{~g} ., 90 \%$) in needles, m. p. $276-277^{\circ}$ (Found: C, $61 \cdot 5 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 23.9 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 61 \cdot 7 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 24 \cdot 0 \%$). The compound was also obtained (20%) from 2 -hydroxy-3-methyl-1,4,6-triazanaphthalene and diazomethane.

3,4-Dihydro-2,4-dimethyl-3-oxo-1,4,6-triazanaphthalene (VIII; $\mathrm{R}=\mathrm{Me}$).-4-Amino-3-methylaminopyridine ${ }^{12}(0 \cdot 4 \mathrm{~g}$.) in benzene (25 c.c.) was heated under reflux with ethyl pyruvate under nitrogen for 4 hr . and water was then removed by azeotropic distillation. Heating was continued for 4 hr . and the product was collected from the cooled solution; recrystallisation from ethanol-hexane (charcoal) gave 3,4-dihydro-2,4-dimethyl-3-oxo-1,4,6-triazanaphthalene ($0.3 \mathrm{~g} ., 53 \%$), in pale yellow needles, m. p. $228-230^{\circ}$ (decomp.) (Found: C, $61 \cdot 4 ; \mathrm{H}, 5 \cdot 25$; N, $23 \cdot 8 . \quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 61 \cdot 7 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 24 \cdot 0$). The compound was also obtained (26\%) by methylation with diazomethane of the impure 3-hydroxy-2-methyl-1,4,6-triazanaphthalene described above.

2-Hydroxy-1,4,6-triazanaphthalene-3-carboxyureide (III; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$).-3,4-Diaminopyridine (8 g .) in ethanol ($200 \mathrm{c} . \mathrm{c}$.) was added to a cold solution of alloxan monohydrate (17 g .) in ethanol ($200 \mathrm{c} . \mathrm{c}$.), and the yellow precipitate ($16.5 \mathrm{~g} ., 96 \%$) was collected after 4 hr . and washed with water and with methanol. The ureide was obtained as a yellow powder, m. p. 238-240 (decomp.) (Found: C, 45.9; H, 3.3; N, 29.8. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires C, $46 \cdot 4$; H, $3 \cdot 0$; N, 30.0%).

1,2,3,4-Tetrahydro-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin (V; $\mathrm{R}=\mathrm{H}$).-The foregoing ureide (2 g .) was boiled with acetic acid ($10 \mathrm{c} . \mathrm{c}$.) for 30 min . The spiran separated from the cold solution; recrystallisation gave needles (1.7 g ., 85%), m. p. $257-258^{\circ}$ (decomp.) (Found: C, 45.9; H, 3.3; N, 29.8. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 46.4 ; \mathrm{H}, \mathbf{3 . 0} ; \mathrm{N}, \mathbf{3 0 . 0} \%$). Similar cyclisation occurred in 2 N -hydrochloric acid and in 2 N -sodium hydroxide.

1,2,3,4-Tetrahydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin (V ; $\mathrm{R}=\mathrm{Me}$). -Alloxan monohydrate (8.3 g .) in water ($100 \mathrm{c} . \mathrm{c}$.) was added to a solution of 3 -amino-4-methylaminopyridine (4 g .) in ethanol ($75 \mathrm{c} . \mathrm{c}$.), and the product was collected after 6 hr . at room temperature. Recrystallisation from water (charcoal) gave the spivan ($5.9 \mathrm{~g} ., 73 \%$) in needles, m. p. 225-226 (decomp.) (Found: C, 45.2; H, 4.1; N, 26.5. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$ requires C, $45.3 ; \mathrm{H}, 4.2 ; \mathrm{N}, 26.4 \%$). The hydantoin dissolved in aqueous alkali to give a colourless solution; in ethanol or acetic acid it showed a blue fluorescence under ultraviolet light.

1,2,3,4-Tetrahydro-1, $1^{\prime}, 3^{\prime}$-trimethyl-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin (VI).(a) Ethereal diazomethane (from methylnitrosourea, 30 g .) was added to 1,2,3,4-tetrahydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin ($2 \cdot 2 \mathrm{~g}$.) in methanol (250 c.c.). Next day the solvents were removed under reduced pressure, and crystallisation of the residue from ethanol-hexane (charcoal) gave the trimethyl-spiran monohydrate in plates ($1 \cdot 2 \mathrm{~g} ., 50 \%$), m. p. 185° (Found: C, $49 \cdot 2 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 23 \cdot 6 ; N-\mathrm{Me}, 12 \cdot 1 . \quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 49 \cdot 1$; H, $5 \cdot 2 ; \mathrm{N}, 23 \cdot 9 ; N-\mathrm{Me}, 15 \cdot 3 \%$).
(b) A stirred suspension of 2-hydroxy-1,4,6-triazanaphthalene-3-carboxyureide ($1 \cdot 1 \mathrm{~g}$.) was treated with ethereal diazomethane from methylnitrosourea (20 g .), and the mixture was kept at 0° for 4 hr . before the addition of further ethereal diazomethane (from methylnitrosourea, 30 g .). After 24 hr . at room temperature the solvents were evaporated under reduced pressure and crystallisation from ethanol-hexane (charcoal) gave the trimethyl-spiran in plates, m. p. 185° alone and when mixed with that prepared by method (a).

4, 1^{\prime}-Diacetyl-1,2,3,4-tetrahydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin.The spiran ($\mathrm{V} ; \mathrm{R}=\mathrm{Me}$) (0.5 g .) was boiled with acetic anhydride ($30 \mathrm{c} . \mathrm{c}$.) and, when a clear solution was obtained (15 min .), acetyl chloride ($10 \mathrm{c} . c$.) was added and the solution was boiled under reflux for 30 min . Evaporation under reduced pressure left a residue of the diacetylspiran (0.4 g .), which crystallised from aqueous ethanol (charcoal) in prisms (0.23 g ., 34%), m. p. 272° (decomp.) after being dried at $175^{\circ} / 1 \mathrm{~mm}$. for 6 hr . (Found: C, $50 \cdot 2 ; \mathrm{H}, 4 \cdot 0$; N, $20 \cdot 7 . \quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 50 \cdot 8 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}, 21 \cdot 1 \%$). Solutions in ethanol and in acetic acid showed blue fluorescence in ultraviolet light.

1,2,3,4-Tetrahydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2-spiro-5' - hydantoin (IX).-4-Amino-3-methylaminopyridine (0.6 g .) in ethanol ($15 \mathrm{c} . \mathrm{c}$.) was added to alloxan monohydrate (1.25 g .) in ethanol ($25 \mathrm{c} . \mathrm{c}$.) and the product was collected after 6 hr . and washed with water
and with methanol. Recrystallisation from aqueous ethanol (charcoal) gave the spivan (IX) ($1 \cdot 1 \mathrm{~g} ., 90 \%$) in needles, m. p. 167° (Found: C, $48 \cdot 0 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{N}, 28 \cdot 1$; $\mathrm{O}, 19 \cdot 7 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 48.6 ; \mathrm{H}, 3.7 ; \mathrm{N}, 28.3 ; \mathrm{O}, 19.4 \%$). The compound dissolved in aqueous sodium hydroxide, and an ethanolic solution showed blue fluorescence under ultraviolet light.

Ethyl 2-Hydroxy-1,4,6-triazanaphthalene-3-carboxylate (III; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$) and 3 -Hydroxy-1,4,6-triazanaphthalene-2-carboxylate (VII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$).-Diethyl mesoxalate (12 c.c.) in ethanol ($20 \mathrm{c.c}$.) was added to 3,4 -diaminopyridine (5 g .) in ethanol ($100 \mathrm{c.c}$.), and the mixture was heated on a steam-bath for 30 min . Material which crystallised from the cold solution recrystallised from ethanol and gave a mixture ($7 \mathrm{~g} ., 70 \%$) which was separated by fractional crystallisation from ethanol into ethyl 2-hydroxy-1,4,6-triazanaphthalene-3-carboxylate (6.5 g., 65%), yellow needles, m. p. 227-228 ${ }^{\circ}$ (decomp.) (Found: C, $54.5 ; \mathrm{H}, 4.0 ; \mathrm{N}, 18.8 \%$), and ethyl 3-hydroxy-1,4,6-triazanaphthalene-2-carboxylate (0.06 g., 0.6%), yellow prisms, m. p. 153 154° (Found: C, $54 \cdot 4 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 18 \cdot 7 . \mathrm{C}_{10} \mathrm{H}_{0} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 54 \cdot 8 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 19 \cdot 2 \%$). The 2-hydroxy-ester was soluble in water and less soluble in other solvents; an ethanolic solution showed a blue fluorescence under ultraviolet light.

Ethyl 1,2-Dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-carboxylate (IV; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$).-3-Amino-4-methylaminopyridine (2 g .) in ethanol ($50 \mathrm{c} . \mathrm{c}$.) was added to a solution of diethyl mesoxalate (3.5 g.) in ethanol (10 c.c.), and the mixture was heated on a steam-bath and stirred for 30 min . Recrystallisation of the solid product from ethanol-hexane (charcoal) gave the ester ($3 \cdot 12$ g., 82%) in needles, m. p. 176° (Found: $\mathrm{C}, 56 \cdot 7 ; \mathrm{H}, 4 \cdot 7$; $\mathrm{N}, 18 \cdot 0 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 56.7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 18.0 \%$). The compound dissolved in hot water and in dilute acid, but was sparingly soluble in most solvents. The ester ($1.53 \mathrm{~g} ., 50 \%$), m. p. and mixed m. p. 176°, was also obtained by treating ethyl 2 -hydroxy-1,4,6-triazanaphthalene-3-carboxylate (3.0 g.) with diazomethane.

Ethyl 3,4-Dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2-carboxylate (VIII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$). -Diethyl mesoxalate (1.75 g .) in ethanol ($10 \mathrm{c} . \mathrm{c}$.) was added dropwise to a stirred solution of 4 -amino-3-methylaminopyridine (1.0 g .) in ethanol ($20 \mathrm{c} . \mathrm{c}$.), and the mixture was heated on a steam-bath for 2 hr . The solution was evaporated under reduced pressure and the residue of bicyclic ester crystallised from benzene-hexane (charcoal) in needles (l.11 g., 58%), m. p. 127° (Found: C, 56.4; H, 4.7; N, 17.9. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 56 \cdot 7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 18.0 \%$). Ethyl 3-hydroxy-1,4,6-triazanaphthalene-2-carboxylate and diazomethane similarly gave the N-methyl derivative, m. p. and mixed m. p. 127° (Found: $N-\mathrm{Me}, 9 \cdot 1$; OEt, 18.3. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $N-\mathrm{Me}, 12 \cdot 5$; OEt, $19 \cdot 3 \%$).

2-Hydroxy-1,4,6-triazanaphthalene-3-carboxylic Acid (III; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$).—(a) Ethyl 2-hydroxy-1,4,6-triazanaphthalene-3-carboxylate (3 g .) was heated with 2 N -sodium hydroxide ($30 \mathrm{c} . \mathrm{c}$.) on a steam-bath for 2 hr . and the solution was then acidified. Recrystallisation of the solid from aqueous ethanol gave the corresponding acid as dihydrate ($2.32 \mathrm{~g} ., 75 \%$), m. p. $>380^{\circ}$ (decomp.) (Found: $\mathrm{C}, 42.5 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 18 \cdot 8 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 42 \cdot 3 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}$, 18.5%), sparingly soluble in ethanol and in water.
(b) 2-Hydroxy-1,4,6-triazanaphthalene-3-carboxyureide ($2 \cdot 0 \mathrm{~g}$.) was heated on a steam-bath with 2 N -sodium hydroxide ($50 \mathrm{c} . c$.) for 4 hr . to give the hydrated acid (0.8 g ., 40%) (Found: C, 41.8 ; H, $4 \cdot 0$; N, 18.2%).
(c) The acid was also obtained, as colourless needles ($1.68 \mathrm{~g} ., 80 \%$), when 3 ,4-diaminopyridine (1 g .) and diethyl mesoxalate (1.5 c.c.) were heated with N -hydrochloric acid ($25 \mathrm{c} . \mathrm{c}$.) on a steam-bath for 2 hr . (Found: C, $42 \cdot 5 ; \mathrm{H}, 4.0 \%$).

1,2-Dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-carboxylic Acid (IV; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$).-(a) Ethyl 1,2-dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-carboxylate ($1 \cdot 0 \mathrm{~g}$.) was heated in 2 N -hydrochloric acid ($30 \mathrm{c} . \mathrm{c}$.) on a steam-bath for 30 min . The cooled solution deposited yellow prisms of the derived acid which crystallised from aqueous ethanol (charcoal) in colourless needles (0.56 g., 64%), decomp. $214-215^{\circ}$ (Found: N, 20.0. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires N, 20.5\%).
(b) 1,2,3,4-Tetrahydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-spiro-5'-hydantoin (l g.) was heated on a steam-bath for 2 hr . with 2 N -potassium hydroxide (20 c.c.). Acidification gave the acid which crystallised from aqueous ethanol (charcoal) in needles, m. p. and mixed m. p. 213-215 ${ }^{\circ}$ (decomp.).
(c) A methanolic solution (100 c.c.) of 2-hydroxy-1,4,6-triazanaphthalene-3-carboxylic acid (0.5 g .) was treated with ethereal diazomethane for 2 hr . The solvent was evaporated and the residue was boiled with 2 N -hydrochloric acid, which gave the above 1-methyl-2-oxo-acid ($0 \cdot 11 \mathrm{~g}$., 24%) .

1,2-Dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene (IV; $\mathrm{R}=\mathrm{H}$).-1,2-Dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-carboxylic acid (1.0 g .) was heated at 190° under nitrogen for $2-3 \mathrm{~min}$., and sublimation of the residue at $200^{\circ} / 15 \mathrm{~mm}$. then gave 1,2 -dihydro-1-methyl-2-oxo-$1,4,6-$ triazanaphthalene (0.41 g ., 52%) in colourless needles, m. p. $174-176^{\circ}$, raised by recrystallisation from light petroleum (b. p. $60-80^{\circ}$) to m. p. 177° (Found: C, 59.5 ; $\mathrm{H}, 4 \cdot 3$. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 59 \cdot 6 ; \mathrm{H}, 4 \cdot 4 \%$).

3,4-Dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2-carboxylic Acid (VIII; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$).(a) 1,2,3,4-Tetrahydro-4-methyl-3-oxo-2-spiro- 5^{\prime}-hydantoin (0.5 g .) was heated with 2 N -hydrochloric acid on a steam-bath for 2 hr ., and the solution was then continuously extracted with chloroform. The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was evaporated, and crystallisation of the residue from benzene-hexane (charcoal) gave 3,4-dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2carboxylic acid ($0 \cdot 2 \mathrm{~g}$., $\mathbf{4 8} \%$) in colourless prisms, m. p. 286- 288° (decomp.) (Found: C, 52.1; $\mathrm{H}, 3 \cdot 7 ; \mathrm{N}, 20 \cdot 1 . \quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 52 \cdot 7 ; \mathrm{H}, \mathbf{3 \cdot 4} ; \mathrm{N}, 20 \cdot 5 \%$. The acid became red on exposure to air.
(b) Ethyl 3,4-dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2-carboxylate (0.75 g .) was heated in 2 N -hydrochloric acid (15 c.c.) on a steam-bath for 2 hr . and the solution was then continuously extracted with chloroform. Evaporation of the dried (MgSO_{4}) extract and crystallisation of the residue from benzene-hexane gave the acid (0.29 g ., 44%) in prisms, m . p. and mixed m. p. 286- 288° (decomp.). Alkaline hydrolysis of the ester and the derived spirohydantoin similarly gave the acid. The same acid was obtained (60%) directly from 4 -amino3 -methylaminopyridine and ethyl mesoxalate by condensation in boiling N -hydrochloric acid.

3,4-Dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene (VIII; $\mathrm{R}=\mathrm{H}$).-Pyrolysis of 3,4-di-hydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-2-carboxylic acid (0.43 g .) at 180° under nitrogen for $2-3 \mathrm{~min}$., and sublimation of the residue under reduced pressure, gave 3,4-dihydro-4-methyl-$3-$ oxo-1,4,6-triazanaphthalene ($0 \cdot 13 \mathrm{~g}$., 36%), m. p. $138-140^{\circ}$. This crystallised from light petroleum (b. p. $60-80^{\circ}$) in colourless needles, m. p. 145°, and became coloured when exposed to air (Found: C, $59.8 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 25.9 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 59 \cdot 6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 26 \cdot 1 \%$).

2-Hydroxy-1,4,6-triazanaphthalene-3-carboxyamide (III; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH}_{2}$). - Ethyl 2-hydroxy-$1,4,6$-triazanaphthalene-3-carboxylate ($0 \cdot 3 \mathrm{~g}$.) was heated on a steam-bath with aqueous ammonia ($d 0.88$; 6 c.c.) for 30 min . The amide was collected, and recrystallisation from aqueous ethanol gave the amide (0.26 g ., 99%) in yellow plates, decomp. $>315^{\circ}$ (Found: C , $50.5 ; \mathrm{H}, 3 \cdot 3 ; \mathrm{N}, 29 \cdot 2 . \quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 50.5 ; \mathrm{H}, 3.2 ; \mathrm{N}, 29.5 \%$). An ethanolic solution showed blue fluorescence under ultraviolet light.

3-Hydroxy-1,4,6-triazanaphthalene-2-carboxyamide (VII; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH}_{2}$).-Ethyl 3-hydroxy-1,4,6-triazanaphthalene-2-carboxylate ($0 \cdot 1 \mathrm{~g}$.) was converted, similarly to the isomer described above, into the amide (0.08 g ., 92%) which crystallised from aqueous ethanol in yellow prisms, m. p. 355° (decomp.) (Found: C, $48 \cdot 4 ; \mathrm{H}, 3.5 ; \mathrm{N}, 27.8 . \quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 48 \cdot 2$; H, 3.5 ; N, $28 \cdot 1 \%$).

1,2-Dihydro-1-methyl-2-oxo-1,4,6-triazanaphthalene-3-carboxyamide (IV; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH}_{2}$).Ammonolysis of the corresponding ester (2 g .) with aqueous ammonia ($d 0.88,35 \mathrm{c} . \mathrm{c}$.) on a steam-bath for 30 min . gave the amide, needles (from ethanol; charcoal) ($1.69 \mathrm{~g} ., 96 \%$), m. p. $253-254{ }^{\circ}$ (decomp.) (Found: C, $53.0 ; \mathrm{H}, 4.0$; N, 27.0. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 52.9 ; H, 4.0 ; N, 27.4\%).

3,4-Dihydro-4-methyl-3-oxo-1,4,6-tviazanaphthalene-2-carboxyamide (VIII; $\mathrm{R}=\mathrm{CO} \cdot \mathrm{NH}_{2}$).Saturated ethanolic ammonia (20 c.c.) was added to a solution of 3,4-dihydro-4-methyl-3-oxo-1,4,6-triazanaphthalene-3-carboxylate (0.5 g .) in ethanol ($10 \mathrm{c} . \mathrm{c}$.), and the mixture was heated on a steam-bath for 30 min . Recrystallisation of the solid product from ethanol gave the amide in needles, m. p. 262-263 ${ }^{\circ}$ (decomp.) (Found: C, $53.0 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}, 26 \cdot 7 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, \mathbf{4 \cdot 0} ; \mathrm{N}, 27 \cdot 4 \%$).

The authors thank the Anti-Cancer Campaign Committee of the University of Adelaide for a maintenance grant (to R. P. S.) and the Sloan-Kettering Institute for Cancer Research for biological tests on a number of compounds. Microanalyses were carried out by the C.S.I.R.O. Microanalytical Laboratory staff under the supervision of Dr. W. Zimmermann.

[^0]: ${ }^{1}$ Part VI, Clark-Lewis and Katekar, J., 1959, 2825.
 ${ }^{2}$ Clark-Lewis, J., 1957, 422.
 ${ }^{3}$ Clark-Lewis and Thompson, J., 1957, 430.
 ${ }^{4}$ Koenigs, Bueren, and Jung, Ber., 1936, 69, 2690.
 5 Talik and Plazek, Roczniki Chem., 1956, 30, 1139.
 ${ }^{6}$ Albert and Hampton, J., 1952, 4985.
 7 Bremer, Annalen, 1937, 529, 290.
 s Albert and Pedersen, J., 1956, 4683.

 - Personal communication from Professor A. Albert.
 ${ }^{10}$ Israel and Day, J. Org. Chem., 1959, 24, 1455.
 11 De Selms and Mosher, J. Amer. Chem. Soc., 1960, 82, 3762.
 12 Clark-Lewis and Singh, J., 1962, 2379.

[^1]: ${ }_{13}$ Bohlmann, Chem. Ber., 1951, 84, 860.

